
1 Linear Tetrahedron

We compute the DOS for all three dimensions using the Linear Tetrahedron method. Considering a
reciprocal space Hamiltonian Hk with M degrees of freedom, we denote εmk its m-th eigenvalue for
m ∈ J1,MK.

1.1 1D Linear Tetrahedron

In 1D the Brillouin zone is split into subintervals of equal length where eigenvalues are interpolated
as

εmk = a+ bk, ∀m ∈ J1,MK, k ∈ B (1)

Therefore the expression of the DOS is

D(E) =
1

|B|

ˆ
S(E)

1

|∇εk|
dσ(k) =

1

|B|

ˆ
S(E)

1

|b|
dσ(k) (2)

Which leads to the following contribution at each interval Ti for the m-th eigenvalue between the
points ki and ki+1 ∈ [0, 1]

DTi(E) =

{
|Ti|
|b| if εmki < E < εmki+1

0 else
(3)

1.2 2D Linear Tetrahedron

In 2D, the reduced Brillouin zone is a square. We can subdivide this square into multiple squares
that can all be subdivided into two triangles. Let’s place ourselves in a triangle where we want to
interpolate the eigenvalues on it. Let ε be an eigenvalue on T our triangle. We have in cartesian
coordinates

ε(kx, ky) = akx + bky + c (4)

Now using the interpolated values of ε on each vertex that we will call εi and such that ε1 ≤ ε2 ≤ ε3
(for convenience).

We have in barycentric coordinates that

ε(e, u) = ε1(1− e− u) + ε2e+ ε3u (5)

Now we want to interpolate the DOS

D(E) =
1

|B|

ˆ
S(E)

1

|∇ε(e, u)|
∂(kx, ky)

∂(e, u)
dσ(e, u) (6)

Now splitting the Brillouin zone into triangles, we can exhibit the contribution of each triangle Ti to

the DOS and using that |∇ε(e, u)| =
√
(ε2 − ε1)

2 + (ε3 − ε1)
2

DTi(E) =
2|Ti|
|B|

1√
(ε2 − ε1)

2 + (ε3 − ε1)
2

ˆ
S(E)∩Ti

dσ(e, u) (7)

Herethe intersection of the Fermi surface and the triangles are (depending on E) either empty,
straight lines or points.

� E < ε1 or E > ε3, in this case S(E) ∩ Ti = ∅ thus the contribution to the DOS is 0.
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� ε1 < E < ε2, here we have S(E) ∩ Ti which is a line between two points as shown in (rajouter
figure).
We have for c1 that u = 0 and for c2 we have e = 0, thus giving us both equations

c1 : E = ε1(1− e) + ε2e, u = 0 (8)

c2 : E = ε1(1− u) + ε3u, e = 0 (9)

So c1 =
(

E−ε1
ε2−ε1

, 0
)
and c2 =

(
0, E−ε1

ε3−ε1

)
.

Therefore the length A of the segment [c1, c2] is

A =

√(
E − ε1
ε2 − ε1

)2

+

(
E − ε1
ε3 − ε1

)2

(10)

A = (E − ε1)

√
(ε2 − ε1)2 + (ε3 − ε1)2

(ε2 − ε1)2(ε3 − ε1)2
(11)

A =
(E − ε1)

(ε2 − ε1)(ε3 − ε1)

∣∣∣∇ε(e, u)
∣∣∣ (12)

Thus the contribution to the DOS finally becomes

DTi (E) =
2
∣∣∣Ti

∣∣∣
|B|

(E − ε1)

(ε2 − ε1)(ε3 − ε1)
(13)

� ε2 < E < ε3, we still have a line as shown in (mettre figure).
Here for c1 we have e+ u = 1 and for c2 we have e = 0

c1 : E = ε2e+ ε3u, e+ u = 1 (14)

c2 : E = ε1(1− u) + ε3u, e = 0 (15)

(16)

c1 =
(

ε3−E
ε3−ε2

, E−ε2
ε3−ε2

)
, c2 =

(
0, E−ε1

ε3−ε1

)
.

Now the length A of the segment is

A =

√(
ε3 − E

ε3 − ε2

)2

+

(
E − ε2
ε3 − ε2

− E − ε1
ε3 − ε1

)2

(17)

A =

√(
(ε3 − ε1)(ε3 − E)

(ε3 − ε2)(ε3 − ε1)

)2

+

(
(E − ε2)(ε3 − ε1)− (E − ε1)(ε3 − ε2)

(ε3 − ε2)(ε3 − ε1)

)2

(18)

A =
1

(ε3 − ε2)(ε3 − ε1)

√
(ε3 − ε1)2(ε3 − E)2 + (E − ε3)2(ε2 − ε1)2 (19)

A =
(ε3 − E)

(ε3 − ε2)(ε3 − ε1)

∣∣∣∇ε(e, u)
∣∣∣ (20)

Thus the contribution to the DOS finally becomes

DTi (E) =
2
∣∣∣Ti

∣∣∣
|B|

(ε3 − E)

(ε3 − ε2)(ε3 − ε1)
(21)
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1.3 3D Linear Tetrahedron

In 3D, the reduced Brillouin zone is a cube. We can subdivide this cube into multiple cube that can
all be subdivided into six regular tetrahedra. Let’s place ourselves in a tetrahedron where we want to
interpolate the eigenvalues on it. Let ε be an eigenvalue on T our tetrahedron. We have in cartesian
coordinates

ε(kx, ky, kz) = akx + bky + ckz + d (22)

Now using the interpolated values of ε on each vertex that we will call εi and such that ε1 ≤ ε2 ≤
ε3 ≤ ε4 (for convenience).

We have in barycentric coordinates that

ε(e, u, v) = ε1(1− e− u− v) + ε2e+ ε3u+ ε4v (23)

Now we want to interpolate the DOS

D(E) =
1

|B|

ˆ
S(E)

1

|∇ε(e, u, v)|
∂(kx, ky, kz)

∂(e, u, v)
dσ(e, u, v) (24)

Now splitting the Brillouin zone into triangles, we can exhibit the contribution of each triangle Ti to

the DOS and using that |∇ε(e, u, v)| =
√

(ε2 − ε1)
2 + (ε3 − ε1)

2 + (ε4 − ε1)
2

DTi(E) =
6|Ti|
|B|

1√
(ε2 − ε1)

2 + (ε3 − ε1)
2 + (ε4 − ε1)

2

ˆ
S(E)∩Ti

dσ(e, u) (25)

� E < ε1 or E > ε4, in this case S(E) ∩ Ti = ∅ thus the contribution to the DOS is 0.

� ε1 < E < ε2, here we have S(E) ∩ Ti which is a triangle whose vertex are on the ridges of the
tetrahedron We have for c1 that u = v = 0, for c2 e = v = 0 and for c3, e = u = 0, giving us the
three following equations

c1 : E = ε1(1− e) + ε2e, u = v = 0 (26)

c2 : E = ε1(1− u) + ε3u, e = v = 0 (27)

c3 : E = ε1(1− v) + ε4v, e = u = 0 (28)

c1 =
(

E−ε1
ε2−ε1

, 0, 0
)
, c2 =

(
0, E−ε1

ε3−ε1
, 0
)
, c3 =

(
0, 0, E−ε1

ε4−ε1

)
So the area A =

´
S(E)∩Ti

dσ(e, u) of the triangle spanned by our 3 points c1, c2 and c3 is

A =
|(c2 − c1)× (c3 − c1)|

2
(29)

A =
(E − ε1)

2

2

√
(ε2 − ε1)2 + (ε3 − ε1)2 + (ε4 − ε1)2

(ε2 − ε1)(ε3 − ε1)(ε4 − ε1)
(30)

Finally the contribution on the tetrahedron to the DOS is

DTi(E) =
3|Ti|
|B|

(E − ε1)
2

(ε2 − ε1)(ε3 − ε1)(ε4 − ε1)
(31)

� ε2 < E < ε3, here we have S(E) ∩ Ti which is a tetragon.

c1 : E = ε2e+ ε4v, u = 0, e+ v = 1 (32)

c2 : E = ε2e+ ε3u, v = 0, e+ u = 1 (33)

c3 : E = ε1(1− u) + ε3u, e = v = 0 (34)

c4 : E = ε1(1− v) + ε4v, e = u = 0 (35)
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Which gives us c1 =
(

ε4−E
ε4−ε2

, 0, E−ε2
ε4−ε2

)
, c2 =

(
ε3−E
ε3−ε2

, E−ε2
ε3−ε2

, 0
)
, c3 =

(
0, E−ε1

ε3−ε1
, 0
)
, c4 =

(
0, 0, E−ε1

ε4−ε1

)
Now the area A of a tetragon is as follows

A =

∣∣∣((c1 − c4) + (c2 − c4))× (c2 − c4)
∣∣∣

2
(36)

A =

√
(ε2 − ε1)2 + (ε3 − ε1)2 + (ε41 − ε1)2

2(ε3 − ε1)(ε4 − ε1)
×(

(ε2 − ε1)− 2(ε2 − E)− (ε2 − E)2((ε3 − ε1) + (ε4 − ε2))

(ε3 − ε2)(ε4 − ε2)

) (37)

DTi(E) =
3|Ti|
|B|

1

(ε3 − ε1)(ε4 − ε1)
×(

(ε2 − ε1)− 2(ε2 − E)− (ε2 − E)2((ε3 − ε1) + (ε4 − ε2))

(ε3 − ε2)(ε4 − ε2)

) (38)

� ε3 < E < ε4, here we have S(E) ∩ Ti which is a triangle whose vertex are on the ridges of the
tetrahedron We have for c1 that u = 0, for c2 e = 0 and for c3, e = u = 0, giving us the three
following equations

c1 : E = ε2e+ ε4v, u = 0, e+ v = 1 (39)

c2 : E = ε3u+ ε4v, e = 0, u+ v = 1 (40)

c3 : E = ε1(1− v) + ε4v, e = u = 0 (41)

c1 =
(

ε4−E
ε4−ε2

, 0, ε2−E
ε4−ε2

)
, c2 =

(
0, ε4−E

ε4−ε3
, ε3−E
ε4−ε3

)
, c3 =

(
0, 0, E−ε1

ε4−ε1

)
ˆ
S(E)∩Ti

dσ(e, u, v) =
|(c1 − c3)× (c2 − c3)|

2
(42)

ˆ
S(E)∩Ti

dσ(e, u, v) =
(ε4 − E)2

2

√
(ε2 − ε1)2 + (ε3 − ε1)2 + (ε4 − ε1)2

(ε4 − ε1)(ε4 − ε2)(ε4 − ε3)
(43)

DTi(E) =
3|Ti|
|B|

(ε4 − E)2

(ε4 − ε1)(ε4 − ε2)(ε4 − ε3)
(44)
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