1 Linear Tetrahedron

We compute the DOS for all three dimensions using the Linear Tetrahedron method. Considering a
reciprocal space Hamiltonian Hy with M degrees of freedom, we denote €, its m-th eigenvalue for
m € [1, M].

1.1 1D Linear Tetrahedron

In 1D the Brillouin zone is split into subintervals of equal length where eigenvalues are interpolated
as

Emk = a+ bk, Vm e [1,M],k€ B (1)
Therefore the expression of the DOS is
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Which leads to the following contribution at each interval T; for the m-th eigenvalue between the
points k; and k41 € [0, 1]

‘,|II;Z|| if Emk; < FE < Emki1 3
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0 else

1.2 2D Linear Tetrahedron

In 2D, the reduced Brillouin zone is a square. We can subdivide this square into multiple squares
that can all be subdivided into two triangles. Let’s place ourselves in a triangle where we want to
interpolate the eigenvalues on it. Let € be an eigenvalue on 7' our triangle. We have in cartesian
coordinates

e(ky, ky) = aky + bky + ¢ (4)

Now using the interpolated values of € on each vertex that we will call £; and such that e; < &9 < €3
(for convenience).
We have in barycentric coordinates that

ele,u) =e1(1l —e—u) +e2e + e3u (5)

Now we want to interpolate the DOS

_i 1 a(kxuky)
D(E) = 1B /S(E) |Ve(e,u)| d(e,u)

do(e,u) (6)

Now splitting the Brillouin zone into triangles, we can exhibit the contribution of each triangle T; to
the DOS and using that |Ve(e,u)| = \/(62 —e1)?+(e3—e1)?
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Dr(FE) = do(e,u 7
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Herethe intersection of the Fermi surface and the triangles are (depending on E) either empty,
straight lines or points.

e F <ejor E > es, in this case S(F) NT; = 0 thus the contribution to the DOS is 0.



e ¢1 < E < &9, here we have S(F) N T; which is a line between two points as shown in (rajouter
figure).
We have for ¢; that u = 0 and for ¢y we have e = 0, thus giving us both equations

c1:E=e1(1—¢€)+e2e, u=0 (8)
co: FE=¢e1(1—u)+esu, e=0 (9)

So ¢ = <E_51,0) and ¢y = (O E_El).

£0—€1 ) e3—€1

Therefore the length A of the segment [c1, o] is
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A (E—&l) \/(62—61)2+(53—61)2 (11)
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A= )(v5(e,u)( (12)

Thus the contribution to the DOS finally becomes
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e c9 < E < g3, we still have a line as shown in (mettre figure).

Here for ¢; we have e +u = 1 and for ¢y we have e =0

c1: B =ee+tezu, etu=1 (14)
co:E=e1(1—u)+esu, e=0 (15)
(16)
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Now the length A of the segment is
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Thus the contribution to the DOS finally becomes
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1.3 3D Linear Tetrahedron

In 3D, the reduced Brillouin zone is a cube. We can subdivide this cube into multiple cube that can
all be subdivided into six regular tetrahedra. Let’s place ourselves in a tetrahedron where we want to
interpolate the eigenvalues on it. Let € be an eigenvalue on 7' our tetrahedron. We have in cartesian

coordinates
e(ky, ky, k) = aky + bky +ck, +d (22)

Now using the interpolated values of £ on each vertex that we will call ; and such that g7 < g9 <
g3 < g4 (for convenience).
We have in barycentric coordinates that

ele,u,v) =e1(l —e—u—wv)+ege +egu+eqv (23)

Now we want to interpolate the DOS

1/ 1 8(/€m,ky,kz)
D(E) = —
) =18 Jsow) Welewm)] ole,u,0)

do(e,u,v) (24)

Now splitting the Brillouin zone into triangles, we can exhibit the contribution of each triangle T; to

the DOS and using that |Ve(e,u,v)| = \/(52 —e1)? +(e3—e1) + (€4 — 1)

6|7 1
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e £ <ejor E > ey, in this case S(F)NT; = 0 thus the contribution to the DOS is 0.

e ¢1 < E < g9, here we have S(E) N T; which is a triangle whose vertex are on the ridges of the
tetrahedron We have for ¢ that u = v = 0, for ¢ e = v = 0 and for c3, e = u = 0, giving us the
three following equations

caa:E=e(l—e)+ee, u=v=0 (26)
co:E=e1(1—u)+esu, e=v=0 (27)
cs:E=e1(1—v)+eq, e=u=0 (28)

o1 = (£22,0,0), 2 = (0, £22,0), e5 = (0,0, 222

So the area A = fS(E)ﬁT' do(e,u) of the triangle spanned by our 3 points c1, c2 and c3 is

[(ca —c1) X (e3 —c1)

A= 2
. (29)
A (E—€1)2 \/(52 —e1)2 4 (e3—€1)%2 4 (4 —£1)? (30)
2 (62—81)(83—61)(84—61)
Finally the contribution on the tetrahedron to the DOS is
T, E—c)?
e (31)

1Bl (e2—e1)(e3 —er)(ea — e1)

e £ < E < g3, here we have S(E) NT; which is a tetragon.
c1:E=ee+en, u=0et+tv=1 (32)
co:E=¢eoe+esu, v=0,e+u=1 (33)
cs: FE=e1(1—u)+esu, e=v=0 (34)
e E=e1(1—v)+eqv, e=u=0 (35)



Which gives us ¢; = (54—E 0 E*EQ), co = (ES*E E=e ,O), c3 = (0 E=er ,0), 4= (0,0 EiEl)

£4—€27 77 £4—€92 €3—€g ) €3—€2 ) ez—e€q ’eq4—€1

Now the area A of a tetragon is as follows

‘((61 —ca) + (c2 —ca)) X (c2 — 04)’

A= - (36)
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N 2(e3 —e1)(eq — €1) (37)
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e c3 < E < g4, here we have S(E) NT; which is a triangle whose vertex are on the ridges of the
tetrahedron We have for ¢; that u = 0, for ¢co e = 0 and for c¢3, e = u = 0, giving us the three
following equations

c1:E=¢ese+eqv, u=0,e+v=1 (39)
co: E=c3u+eqv, e=0, u+v=1 (40)
s E=e1(1—v)+eqw, e=u=0 (41)

_ [ e4s—F eo—F _ ea—FE e3—F _ FE—eq
1 = <€4,€2707 54752)7 C2 = (Oa ca—c3’ 54,53)7 c3 = <0707 54751>

/ do(e,u,v) = (o1 = cs) >2< (c2 = cs)| (42)
S(B)NT;
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/S(E)rm dofe,v) == (64 —e1)(ea — £2)(e4 — &3) (43)
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