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Solid-states physics [EITTITIItY

Some motivations

Main objective: Numerical simulation of materials

Some properties

® Mechanical properties Ok, but why numerics ?

elastic constants ® Cheaper, faster

® Thermic properties ® Fundamental research
specific heat ® Material design

e FElectric properties
conductivity

o Magnetic properties Cost of a 2 nm? electronic chip ?

susceptibility
e Optical properties $30,000

conductivity
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Solid-states physics [EITTITIItY

What is a material 7

Infinite periodic crystal —> Physical space: R¢, Lattice: R = Z¢

Infinite number of electrons = Fixed electronic density: p(x)
Too complicated ?

Reduce the dimension !

*—¢

Supercell

=

Unit Cell
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SR ICENTSTER S NSS Tl Quantum formalism

Schrodinger equation

Further simplifications
® Born-Oppenheimer approximation
® e-e interaction neglected

e Finite basis of localized functions: Wannier functions

Time Independent Schrédinger Equation

Let H(R,R’) be the Hamiltonian between two sites of R. It is a Hermitian matrix of C**M with
R-periodicity which verifies

HR,R ), = E b, (TISE)

where the E,, and 1), are the eigenvalues and eigenvectors of H(R,R/).
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SR ICENTSTER S NSS Tl Quantum formalism

Bloch’s theorem

Reciprocal lattice

Brillouin zone (R* unit cell)

Bloch’s transform

Solutions to (TISE) can be expanded in a basis of planewaves modulated by R-periodic functions
called Bloch waves.
For k € B,

wnk(R) = elk.runk (3)

where VR € R, upk(r + R) = unx(r).
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SR ICENTSTER S NSS Tl Quantum formalism

Bloch transform

Main Idea: Study the system using these Bloch waves Using the Bloch theorem

Bloch transform and Schrodinger equation (again ?)

vk € B,
He= > e*RH(0,R)ecCMM (4)
ReRL
vk € B,
Hyunk = €nxtnk (TISE2)

where the ¢, are bands and the set of all bands is the band structure of the system.

Remark:

® Bloch’s transform (among other many great things): Théorie Spectrale et Mécanique
Quantique, Ed. 2024, Mathieu Lewin

® QOther derivations of Bloch’s Theorem: Convergence rates of supercell calculations in the
reduced Hartree— Fock model, , David Gontier, Salma Lahbabi
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SR ICENTSTER S NSS Tl Quantum formalism

A band structure example
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Figure 1: Band structure of graphene taken from "The Physics of Graphene"
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Brillouin Zone Integration [EITINEEyISaIt

Brillouin Zone Integration

Bulk properties

Bulk properties of our system can be written as two types of integrals
1
1E) = 5 Y [ HR)8(E - ok

F(E) = |713| > /B FH)L(E — g,)dk

where f is a continuous function of Hy.

We restrict ourselves to I(E) where f = 1, the
Density Of States (DOS)
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PSTICITPN AT PNTISNI M Density Of States

What i1s the DOS ?

|B|Z/ OE = en)d
|B|Z/S,L(E Ve 7 ®)

where S, (E) = {k € B,e,x = E}

Energies (eV)

Issues
® Not well-defined

® Singular function of £

® Not easily computable Hr

X
k-points
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PSTICITPN AT PNTISNI M Density Of States

Smearing and Periodic Trapezoidal Rule

Main Idea: Smooth the Dirac with a regular kernel K,, — ¢

n—0t
Smearing
Formally:
D(E) = lim (D x K,)(E)= lim D,(F) (5)
n—0t+ n—0+

Many choices, but the most natural one is the Lorentzian:

1 7 1 1
K"<E>—ﬂw—‘ﬂlm<mm> (©)

Why ?
® Simple expression, simple to compute

® At fixed n & Trace of the Green’s function
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PSTICITPN AT PNTISNI M Density Of States

Smearing

Final Formula

D(E) = —; n1i>r€+ Im <Z/ E+in— snkdk>
DN,n(E) = ——Im (Nd Z (M))

keBy

where 5
BN:{szrn—w,nezd,ogniSN—l,iE{l,...7d}} (7)

Take away

® Computes an approximated DOS
A Smeared DOS also have a physical meaning

e System dependent: hard to automatically o A
and are of use to physicists and chemists.

tune
e | in O(N—!
rror in
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PSTICITPN AT PNTISNI M Density Of States

Linear Tetrahedron

Main Idea: Interpolate linearly the bands in tetrahedra.
Reminder:

PEEES o e
= — o
1Bl 7= Js,, () |Venk|

Take away

e Explicit formula for the approximated
DOS in all dimensions

® Easy to compute from the formulas

® Performs badly for convex or concave
functions

Figure 2: Tetrahedral decomposition of a cube e Error in O(N~2)
(taken from Wikipedia)
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Brillouin Contour Deformation

Brillouin Contour Deformation (BCD)

Main idea: Regularize the integrand using contour deformation

Lemma

Let I be a R*-periodic function, analytic in an open set U = R + i[—n, n]?. Then, for all
R*-periodic and continuously differentiable functions h(k) : R — [—n,n]¢, we have

/I(k)dk:/I(k+ih(k))det(1+ih’(k))dk
B B

In our case for n = 0,

D(E) = <| 5 2 Z / ToEE—— det(l—H’h’(k))dk) (9)

Remark
® Cauchy theorem to prove the lemma

° Reﬁular inteérand for whatever n > 0
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Examples of deformation
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Figure 3: 1D and 2D deformations (for monatomic chain and graphene)
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Brillouin Contour Deformation

Some insights on the BCD

Reminder:
1 1 Y 1
D(FE)=——Im /7det 1 +:h/(k))dk 10
(B) =~ IBI; S —— ( (k) (10)
Discretization:
Dy(E) L, Yo 1 det (1 + ih’(k)) (11)
=———Im P ——
N TN4 5 E — Hyyinx) !
N
Remark:

® The integrand is analytic almost everywhere on the complex space
® How to compute a fitting deformation ?

® Discretization using the trapezoidal rule on By
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Benchmark results: 1D Monatomic Chain

Main idea: Benchmark our methods on multiple systems in all dimensions.
1D Monatomic Chain: Toy model, everything is computable explicitly

-2 -1 0 1 2
Energies (eV)

Figure 4: DOS of the 1D monatomic chain
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Benchmark results: 1D Monatomic Chain

Main idea: Benchmark our methods on multiple systems in all dimensions.
1D Monatomic Chain: Toy model, everything is computable explicitly
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Figure 5: Relative error (/) and computation time for the 1D monatomic chain
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Benchmark results: SrVOs

Strontium Vanadate (SrVOs;): Realistic material, non-explicit Hamiltonian
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Figure 6: DOS of the SrVOs;
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Benchmark results: SrVOs

Strontium Vanadate (SrVOs3): Realistic material, non-explicit Hamiltonian
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Figure 7: Relative error (£*) and computation time for the SrVO;
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Conclusion

BCD is overall the best-method for the computation of both smeared and non-smeared DOS.
® Low reliability on its internal parameters
® Exponential convergence

® Good for a black-box approach

Thanks for your attention !
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How to compute a good deformation 7

Our integrand is analytic in the upper complex space and we want to continue it analytically in the
lower complex space.

For E = ¢,x,, we have near ko:

1 1 1 1
Lo (E = mperinie) = ~1 _ )= — 12
2B = Eneringo) = 2l (E — Enktin(c) + m) 4 Eosncingo)® (12
n

Thus for small (E — &,x4in))/1 We have near ko
Enktih(k) — E = Venk, - (k+ih(k) — ko) (13)
Therefore to have negative imaginary part near the real axis we need

Ve - h(k) < 0 (14)

= (m(am (P557)) @
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Thus we chose
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